

Subscriber access provided by ISTANBUL TEKNIK UNIV

The Absolute Stereochemistry of Senexdiolic Acid at C-22

Antonio G. González, Teresa Siverio Expósito, Jaime Bermejo Barrera, Ana García Castellano, and Francisco J. Toledo Marante

> J. Nat. Prod., 1993, 56 (12), 2170-2174 DOI: 10.1021/np50102a021 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50102a021 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

THE ABSOLUTE STEREOCHEMISTRY OF SENEXDIOLIC ACID AT C-22

Antonio G. Gonzalez, Teresa Siverio Expósito, Jaime Bermejo Barrera,*

Centro de Productos Naturales Antonio González, IPNAC, CSIC, Carretera La Esperanza 2, 38206 La Laguna, Tenerife, Canary Islands, Spain

ANA GARCÍA CASTELLANO, and FRANCISCO J. TOLEDO MARANTE

Departamento de Quimica, Universidad de Las Palmas Tafira, Las Palmas de Gran Canaria, Canary Islands, Spain

ABSTRACT.—The absolute stereochemistry of senexdiolic acid, a triterpene isolated from Fomes senex, Phellinus torulosus, and Phellinus pomaceus, has been determined as S at C-22 by double resonance experiments and chemical correlation with epi-inotodiol [6].

In earlier papers on *Phellinus pomaceus* (Pers.: S.F. Gray) Mayre (Hymenochaetaceae) (1,2) we reported the isolation of the sterols ergosta-7,22-dien-3-one and ergosta-7,22-dien-3β-ol as well as the pentacyclic triterpenes friedelin and taraxerol, and β-boswellic, ursolic, phellinic, and javeroic acids. A further investigation of this fungus, this time gathered in the woods of Los Tilos (La Palma), and *Phellinus torulosus* from El Bailadero (Tenerife) afforded the following substances: javeroic acid [1], pomacerone [2], and senexdiolic acid [3].

Senexdiolic acid [3], C₃₀H₄₈O₄, is a crystalline compound (mp 272–275°) which has been isolated from the fungus *Fomes senex* by Indian chemists (3) who determined its gross structure principally by means of ¹H nmr and chemical transformations. Nonetheless, the configuration at C-22 could not be elucidated, and as yet no derivatives suitable for X-ray analysis have been obtained. This paper reports the stereochemistry assigned to C-22 on the basis of double resonance experiments and correlation with epi-inotodiol [6].

Compound **3** was methylated and then acetylated to give **4**, [M]⁺ 486 and **5**, [M]⁺ 570, respectively. The published (3) ¹H-nmr data of **4**, **5** and **9** taken on a 60 MHz spectrometer are far from complete, so a full set of ¹H nmr findings run at 200 MHz are given in Table 1

together with first-time data for 3. Table 2 summarizes the new ¹³C-nmr data of 9, 2, 10, 4, and 5.

By means of decoupling experiments on the methyl ester 4 the proton H-24 could be correlated with H-26, H-27, and H-23 which in its turn was coupled with H-22. The coupling constant $J_{20,22}$ proved to be 3.1 Hz which, in accordance with the corrected Karplus curve (4), is consistent with the stereochemistry shown in Figure 1. Senexdiolic acid was thus identified as 3B, 22B-dihydroxylanosta-8,24-dien-29-oic acid. If pomacerone [2] was reduced with LiA1H4 (dry THF, 6 h, reflux), it yielded a diol **10** with J_{20-22} = 6.5 Hz in line with the stereochemical model mentioned above, the Cram rule, and corrected Karplus curve (presumably

$$H_3C$$
 CH_3
 CH_3
 CH_2
 H_3C
 R
 $R = lanostane$
 $R' = H$
 CH_2
 CH_3
 CH_2
 R
 $R' = H$
 CH_3
 CH_2
 CH_3
 CH_3

ź

8 $R_3 = R_4 = H, R_5 = CH_5OT_5$

conforming with inverse stereochemistry at C-22) (Figure 2) (5).

Senexdiolic acid [3] was converted into methyl senexdiolate [4] and this was reduced with LiA1H₄ to yield 7 which, when treated with tosyl chloride, gave the monotosylate 8. Treatment of 8 with LiA1H₄ afforded epi-inotodiol [6] with established 22S stereochemistry (6,7) and traces of 7, a sequence which connected 3 and 6 and established the absolute stereochemistry of 3 at C-22 as S.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES .-

Mp's were taken on a Kofler block and uncorrected. Ir spectra were recorded on a Perkin-Elmer 257 spectrometer. ¹H- and ¹³C-nmr spectra were run on a Bruker WP 200 SY (200 MHz for ¹H nmr and 22.6 MHz for ¹³C nmr) in CDCl₃ or a solution of CDCl₃-CD₃OD (1:1). Mass spectra (eims) were obtained on a VG Micromass ZAB-AF with a direct inlet system at 70 eV.

PLANT MATERIAL.—P. pomaceus (2.5 kg) and P. torulosus (4.5 kg) were dried, ground, extracted, and worked up as described elsewhere (1,2). Plant specimens were deposited in the herbarium of the Faculty of Pharmacy, La Laguna University (voucher numbers TFC Mic 5068 and 6035). Cc on Si gel eluted javeroic acid (220 and 250 mg), pomacerone (135 and 175 mg), and senexdiolic acid (98 and 210 mg) from both extracts.

¹H-nmr Spectroscopic Data for Compounds 9, 3, 4, and 5 in CDCl₃.⁴

Proton	Compound					
Froton	9	3 ^b	4	5		
Н-3	_	3.99 dd (10.3, 5.5)	3.99 dd (11.0, 4.3)	5.17 dd (11.5, 5.0)		
Me-18	0.91 s	0.65 s	0.69 s	0.67 s		
Me-19	0.94 s	0.94 s	0.98 s	1.02 s		
Me-21	1.16 d	0.86 d	0.92 d	0.94 d		
	(6.8)	(6.3)	(6.3)	(6.6)		
H-22	_	3.5 dt	3.64 dt	4.90 dt		
		(6.1, 3.0)	(6.6, 3.1)	(6.5, 3.0)		
Me-23	1.20 s					
H-24		5.16 t	5.16 t	5.08 t		
		(6.9)	(6.3)	(7.3)		
Me-25	0.71 s	_	_			
Me-26	_	1.55 s	1.64 s	1.61 s		
Me-27	_	1.63 s	1.73 s	1.68 s		
Me-28	_	0.80 s	0.86 s	0.88 s		
Me-30		1.05 s	1.15 s	1.22 s		
COOMe	3.63 s		3.70 s	3.66 s		
COO Me	3.64 s	_	_	_		
OAc	_	_		1.99 s		
OAc		_		2.02 s		

⁴Values in parentheses are coupling constants. ^bThese data were determined in CDCl₃-CD₃OD (1:1).

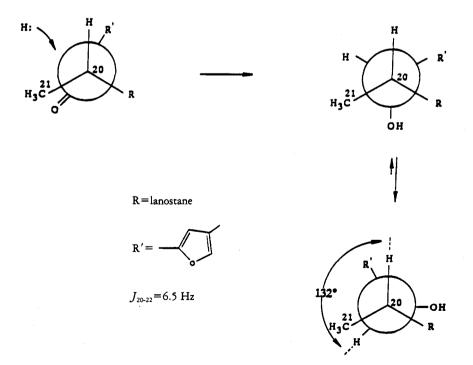


Figure 2

TABLE 2. C Spectral Data for Compounds 9, 2, 10, 4, and 5 in CDCl ₃ .								
Carbon	Compound							
	9	2	10	4	5			
C-1	35.91	35.92	35.55	35.11	34.86			
C-2	26.71	30.85	27.74	27.18	25.85			
C-3	_	217.65	78.94	76.33	76.88ª			
C-4	45.42	47.27	38.86	44.95	36.34			
C-5	47.43	46.93	46.90	46.41	46.46			
C-6	18.55	19.34	18.23	20.74	20.59			
C-7	30.40	27.15	27.79	29.09	26.53			
C-8	134.04	133.11	134.16	134.20	133.79			
C-9	134.84	135.14	134.55	134.55	134.58			
C-10	45.02	36.85	37.00	36.55	34.86			
C-11	22.36	20.95	20.94	20.96	20.92			
C-12	25.86	26.18	26.50	25.74	23.71			
C-13	48.32	44.34	44.80	49.93	44.83			
C-14	49.12	49.41	49.45	53.95	49.13			
C-15	30.56	31.01	30.81	29.95	26.90			
C-16	36.86	34.70	30.88	30.85	30.84			
C-17	52.69	51.06	50.35	47.20	47.22			
C-18	17.16	17.24	15.69	12.57	13.20			
C-19	19.10	18.63	19.12	19.35	19.33			
C-20	42.94	44.19	42.83	41.65	39.80			
C-21	21.61	21.18	15.77	15.65	15.61			
C-22	_	193.55	70.81	73.33	76.99°			
C-23	_	152.37	155.25	27.07	21.10			
C-24	_	119.61	109.52	121.30	120.64			
C-25	_	122.53	120.24	134.00	133.38			
C-26	_	143.65	138.17	17.90	17.82			
C-27	_	9.46	9.77	24.25	24.21			
C-28	_	24.26	24.36	25.94	25.75			
C-29		26.27	27.93	178.00	176.76			
C-30		16.27	16.27	10.66	11.70			
OCOMe	_	_	_	_	170.72			
	_	_	_	_	170.11			
OCO <i>Me</i>	_	_	_	_	21.40 ^b			
	_	_		_	21.10 ^b			
COOMe	179.82	_	_	_				
	177.48	_	_	_	_			
COOMe	51.84	_	_	52.07	52.19			

TABLE 2. ¹³C Spectral Data for Compounds 9, 2, 10, 4, and 5 in CDCl₃

51.27

Methyl senexdiolate [4].—Excess ethereal CH_2N_2 was added to 3 (35 mg) in MeOH at room temperature for 30 min, and after evaporation of the solvent, the ester 4 was obtained quantitatively in the form of a colorless solid: mp 203–205°; [α]D +67.6° (c=0.3, $CHCl_3$); 1 H nmr see Table 1; 13 C nmr see Table 2; eims m/z (rel. int.) [M] $^-$ 486 (13), [M $-C_8H_{16}O]^+$ 358 (12), [M $-C_8H_{16}O-H_2O]^+$ 340 (11).

Acetylmethyl senexdiolate [5].—Methyl senexdiolate [4] (5 mg) was acetylated with Ac_2O /pyridine (0.2 ml of each) for 24 h at room temperature to yield the diacetate 5 (5.2 mg): 1 H nmr see

Table 1; ¹³ C nmr see Table 2; eims m/z (rel. int.) $[M]^+$ 570 (11), $[M-CO_2Me]^+$ 511 (15), $[M-CO_2Me-MeCO_2H]^+$ 451(7), $[M-CO_2Me-2\times MeCO_2H]^+$ 391 (6).

Lanosta-8,23-diene-3,22,29-triol [7].—Methyl senexdiolate [4] (30 mg) in dry THF (10 ml) was refluxed with LiA1H₄ (3 mg) for 3 h. Filtration, drying with Na₂SO₄, and crystallization from MeOH/CHCl₃ yielded 7 (20 mg), as needles: mp 206–208°; $\{\alpha\}D + 62.5^{\circ} \{c=0.2, CHCl_3-MeOH(1:1)\}$; ¹H nmr (200 MHz, CDCl₃) δ 5.18 (1H, t, J, =6.4 Hz, H-24), 3.78–3.62 (2H, m, H-3, H-22), 3.76 (1H, d, J=10.2 Hz, CH₂OH-29), 3.45

^{a,b}Assignments may be interchanged.

(1H, d, J=10.2 Hz, CH₂OH-29), 1.75 (3H, s, Me-27), 1.66 (3H, s, Me-26), 1.03 (3H, s, Me-28), 0.95 (3H, d, J=6.5 Hz, Me-21), 0.94 (3H, s, Me-30), 0.87 (3H, s, Me-19), 0.72 (3H, s, Me-18); eims m/z (rel. int.) [M]⁺ 458 (10), [M-Me]⁺ 443 (12), [M-Me-H₂O]⁺ 425 (12), [M-Me-H₂O-MeOH]⁺ 393 (2).

TOSYLATION OF COMPOUND 7.—Compound 7 (20 mg) in dry pyridine (4 ml) was treated with tosyl chloride (15 mg) and left at room temperature for 2 h. The resulting product was extracted with Et2O, washed with dilute HCl, Na2CO3, and H₂O, dried on Na₂SO₄, and subjected twice to preparative tlc in hexane-EtOAc (7:3) to yield the monotosylate 8 (11 mg): 1H nmr (200 MHz, CDCl₃) δ 7.80 (2H, d, J=8.2 Hz, -OTs), 7.30 (2H, d, J=8.2 Hz, -OTs), 5.18(1H, t, J=6.30 Hz,H-24), 3.99 (1H, d, J=9.7 Hz, CH₂OTs-29), 3.75 (1H, d, J=9.7 Hz, CH₂OTs-29), 3.73-3.62 (2H, d)m, H-3, H-22), 2.48 (3H, s, Me-Ar), 1.75 (3H, s, Me-27), 1.66 (3H, s, Me-26), 0.97 (3H, s, Me-28), 0.94(3H, d, J=6.5 Hz, Me-21), 0.88(3H, s, Me-30), 0.70 (6H, s, Me-18, Me-19), eims m/z (rel. int.) $[M-TsOH]^+$ 440 (4), $[M-TsOH-H_2O]^+$ $422 (18), [M-TsOH-H_2O-Me]^+ 407 (7).$

The monotosylate 8 (10 mg) in THF (5 ml) was refluxed with LiA1H₄ (2.5 mg) for 2 h. The resulting product (7 mg) was purified by preparative tlc in hexane-EtOAc (8:2) three times and crystallized from CHCl₃/MeOH as needles (5 mg), mp 130–132°, [α]D 42° (c=0.25 in CHCl₃): its

mp, $\{\alpha\}D$, ¹H-nmr, and eims data proved identical to those of epi-inotodiol [6].

ACKNOWLEDGMENTS

This work has been partly financed by a grant from CICYT (PB91-0148). JBB and FJT are indebted to the Canary Islands Government (PR28/08.03.90 and PB93/08.03.90) and AGG to the Ramon Areces Foundation, Madrid.

LITERATURE CITED

- A.G. González, J. Bermejo, M.J. Mediavilla, and F.J. Toledo, An. Quim., 80C, 314(1984).
- A.G. González, J. Bermejo, M.J. Mediavilla, F.J. Toledo, and A. Perales, J. Chem. Soc., Perkin Trans. 1, 551 (1986).
- A.K. Batta and S. Rangaswami, J. Chem. Soc., Perkin Trans. 1, 451 (1975).
- E. Giralt, "Introducción a la estereoquímica de los compuestos orgánicos," Ed. Reverte, Barcelona, 1984, p. 63.
- A.G. González, J. Bermejo, M.J. Mediavilla, and F.J. Toledo, Heterocycles, 31, 841 (1990).
- Y. Sonoda and Y. Sato, Chem. Pharm. Bull., 31, 907 (1983).
- A.M. Lobo, P.M. de Abreu, S. Prabhakar, L.S. Godinho, R. Jones, H.S. Rzepa, and D.J. Williams, *Phytochemistry*, 27, 3569 (1988).

Received 24 February 1993